Z
自转
地球自转一周的时间是23小时56分4秒;月亮自转一周的时间跟它绕地球公转一周的时间相同,都是27天7小时43分11.5秒。地球同太阳系其他八大行星一样,在绕太阳公转的同时。围绕着一根假想的自转轴在不停地转动,这就是地球的自转。
灶神星
灶神星又称第4号小行星,是德国天文学家奥伯斯于1807年3月29日发现的。奥伯斯原是一位医学教授,于1802年3月28日的夜间发现第二号小行星智神星(Pallas),5年之后又在他发现第2号小行星的天区室女座西北部发现了灶神星。他给第4号小行星取名为Vesta,是古代意大利的管理炉灶和火种的女神,相当于希腊神话中的赫斯提亚,是炊事人员、磨坊工人、面包师的保护神。又有一说它是源自于古代罗马神话,取名为“灶神”,它是负责寺庙里面和古罗马家庭里面的厨房的火种不灭的神。
载人航天器
载人航天器——能够满足人在其内生活和工作的航天器为载人航天器。载人航天器与人造卫星等不载人航天器的主要区别是:具有保障人生存的生命保障功能,舱内有适合人生存的大气压和大气成分,有适合的温度和湿度,并提供饮水和食物及生活设施;具有人工作所需的操作和实验设备,显示系统及时显示航天器工作状态和实验数据,具有天地通信功能,使航天器中的人能够与地面控制中心进行语音通信;具有一定的活动空间,使人在其内工作和生活具有一定的舒适性。
中等质量恒星
达到红巨星阶段时,0.4到3.4太阳质量的恒星的外壳会向外膨胀,而核心向内压缩,产生将氦聚变成碳的核反应。聚变会重新产生能量,暂时缓解恒星的死亡过程。对于太阳大小的恒星,此过程大约持续十亿年。氦燃烧对温度极其敏感,造成很大的不稳定。巨大的波动会使得外壳获得足够的动能脱离恒星,成为行星状星云。行星状星云中心留下的核心会逐渐冷却,成为小而致密的白矮星,通常具有0.6倍太阳质量,但是只有一个地球大小。
在重力和电子互斥力平衡时,白矮星是相对稳定的。在没有能量来源的情况下,恒星在漫长的岁月中释放出剩余的能量,逐渐暗淡下去。最终,释放完能量的白矮星会成为黑矮星,但是目前宇宙的年龄不足以使得这样的星体存在。
在同时形成的双星或者多星系统中,恒星际质量交流可能改变演化过程。因为一部分质量被其他恒星获得,系统中质量较大的恒星的红巨星阶段演化会被加速,而质量较小的恒星会吸收一部分红巨星的质量,在主星序停留更长时间。
如果白矮星的质量超出钱德拉塞卡极限,电子互斥力会不足以抵抗引力,而会继续坍缩下去。这会造成恒星向外抛出外壳,也就是超新星爆发,标记着恒星的死亡。也就是说,不会有大于1.4倍太阳质量的白矮星。
如果白矮星和另外一颗恒星组成双星系统,那么白矮星可能使用来自另外一颗恒星的氢进行核反应并且将周围的物质加热抛出,即使白矮星的质量低于1.4倍太阳质量。这样的爆炸称为新星。
中子星
中子星是处于演化后期的恒星,它也是在老年恒星的中心形成的。只不过能够形成中子星的恒星,其质量更大罢了。根据科学家的计算,当老年恒星的质量大于十个太阳的质量时,它就有可能最后变为一颗中子星,而质量小于十个太阳的恒星往往只能变化为一颗白矮星。
对于中子星内部的密度高达10的16次方克/立方厘米的物态,目前有三种不同的看法:①超子流体;②固态的中子核心;③中子流体中的π介子凝聚。在极高密度下,当重子核心彼此重叠得相当紧密时(这种情形有可能出现于大质量中子星的中心部分),物质的性质如何,是一个完全没有解决的问题。中子星的质量下限约为0.1太阳质量,上限在1.5~2太阳质量之间。中子星半径的典型值约为10公里。密度最低的固态表面是高密度的铁。
中子星另一个重要特征是存在强度极高的磁场,超过10的12次方高斯,它使表层的铁聚合成长长的铁原子链:每个原子都被压缩并沿磁场被拉长,而且首尾相接,形成从表面向外伸出的“须状物”。在表面以下,由于压力太高,单个原子不能存在。它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会象一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。
最小观念量
由于宇宙具有量子性,因而宇宙中的任何存在形式都具有最小量。也就是说,空间、时间、心理量等观念量都有最小值。我们知道,能量的最小值为普朗克常数h,根据统一性原理,这个观念量的最小单位在统一论中叫做“1伏羲”。
昼夜交替
地球是一个不发光又不透明的球体,同一瞬间阳光只能照亮半个球,被阳光照亮的半个地球是白昼,没有被阳光照亮的半个地球是黑夜,昼半球和夜半球的分界线(圈),叫做晨昏线(圈)。
地球各地所初的昼夜状态可以用太阳高度来表达,太阳高度是太阳高度角的简称,表示太阳光线对当地地平面的倾角,在昼半球上的各地,太阳高度总是大于0度,即太阳在地平线之上;在晨昏线上的各地,太阳告诉等于2度,即太阳刚好位于地平线上;在夜半球上的各地,太阳高度总是小于0度,即太阳位于地平线之下,由于地球不停地运动,昼夜也就不断地交替,昼夜交替的周期,或太阳高度的日变化周期为24小时,叫做一太阳日。太阳日制约着人类的起居作息,因而被用来作为基本的时间单位。此外,太阳日时间不长,使整个地球表面增热和冷却不致过分剧烈,从而保证了地球上生命有机体的生存和发展。
由于地球的自转地球不同位置同一时刻的昼夜情况是不一样的,有的是正午,有的是子夜,有的正经历昼夜交替的早晨或傍晚,当某地太阳升起到一天中最高位置时,太阳只射在该地所处的经线上,这时就是当地的正午,这样确定的时间叫做地方时(localtime)经度每相差15度,地方时相差1小时。
由于地轴是倾斜的,所以地球上不同地区的昼夜长短是不同的。在地球的南北两极地区,太阳终年斜射,昼夜长短变化最大。南北半球的高纬度地区还会出现太阳终日不落或终日不出的现象,即一天24小时都是白天或者都是黑夜,这就是极地地区的“极昼”和“极夜”现象。在南北极点,有长达半年的极昼和极夜。
再发新星
再发新星是爆发变星的一种。大体上每隔10~100年爆发一次,已观测到10余颗。再发新星和经典新星的光变曲线很相似,只有当出现第二次或更多次爆发时才能确定为再发新星。可见光波段的亮度变幅为7~9等,每次爆发释放1036~1037焦耳能量,约抛射出10~6太阳质量的物质,都比经典新星小。有证据表明所有经典新星都是再发新星。如果新星只爆发一次,以银河系每年出现25颗新星计算,银河系诞生以来大约应有21011颗恒星经历了新星爆发,这跟银河系恒星总数相当。但大多数恒星质量较小,演化缓慢,还不可能演变成新星,只有在每颗新星重新爆发很多次的情况下,才能与平均每年出现的新星数目相符。经典新星可能是爆发周期很长的再发新星,因此只观测到一次爆发。
织女星
织女一是天琴座中的一颗亮星,学名叫天琴座a,它是夏夜星空中最著名的亮星之一,平时,人们都叫它织女星。在西方,称为Vega。织女星的直径是太阳直径的3.2倍,体积为太阳的33倍,表面温度为8900摄氏度,呈青白色。它是北半球天空中三颗最亮的恒星之一,距离地球大约26光年。
1.3万多年以前,织女星曾经是北极星由于地轴的进动,现在的北极星是小熊座a星。然而,再过1.2万年以后,织女星又将回到北极星的显赫位置上。在织女星的旁边,有四颗构成一个小菱形。传说这个小菱形是织女织布用的梭子,织女一边织布,一边抬头深情地望着银河东岸的牛郎(河鼓二)和她的两个儿子(河鼓一和河鼓三)。
现代天文观测表明,整个太阳系正以每秒19公里的速度向着织女星附近的方向奔去。
正电子
正电子是基本粒子的一种,带正电荷,质和电子相等,是电子的反粒子。也叫阳电子。最早是由狄拉克从理论上预言的。1932年8月2日,美国加州工学院的安德森等人向全世界庄严宣告,他们发现了正电子。其实在安德森之前,曾有一对夫妇科学家——约里奥·居里夫妇(皮埃尔·居里夫妇的女婿与女儿)首先观察到正电子的存在,但他们并未引起重视,从而错过了这一伟大发现。这对居里夫妇也为人类作出过杰出贡献,他们除错过了正电子的发现外,还同样错过了中子的发现及核裂变的发现,以致于三次走到诺贝尔物理学奖的门槛前而终未能破门而入。但因他们在放射性方面的杰出贡献,他们仍获得了1935年的诺贝尔化学奖。
致密星系
光度几乎全部集中于核心区域的星系。这类星系的表面亮度很高,在照相底片上成像很小,刚好能与恒星的像相区别。因瑞士天文学家F.茨威基在20世纪60年代编制星系和星系团表的过程中所发现,故又称茨威基星系。按致密程度还可分为一般致密、中等致密、甚致密和极端致密4类。致密星系并不构成物理性质单一的一类,它包含许多类型的星系,有的致密星系是正常星系,但表面亮度较高。
更多内容加载中...请稍候...
本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!
阅读阁【yueduge.cc】第一时间更新《宇宙科学知识》最新章节。若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!